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Computer Science I for Majors

Lecture 19 – Recursion

Prof. Jeremy Dixon

Based on slides from the book author, and previous iterations of the course
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Last Class We Covered
• Project 1 Details
• Classes
• Inheritance
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Any Questions from Last Time?
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Today’s Objectives
• To introduce recursion
• To begin to learn how to “think” recursively
• To better understand the concept of stacks
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Introduction to Recursion
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M.C. Escher:
"Drawing Hands" (1948)
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What is Recursion?
• In computer science, recursion is a way of 

thinking about and solving problems
• It’s actually one of the central ideas of CS

• Solving a problem using recursion means the 
solution depends on solutions to smaller 
instances of the same problem
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Recursive Procedures
• When creating a recursive procedure, there 

are a few things we want to keep in mind:
– We need to break the problem into 

smaller pieces of itself
– We need to define a “base case” to stop at
– The smaller problems we break down into 

need to eventually reach the base case



www.umbc.edu

Normal vs Recursive Functions
• So far, we’ve had functions call other functions

– For example, main() calls the square() function

• A recursive function, however, calls itself

main()

square()

compute()
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Why Would We Use Recursion?
• In computer science, some problems are more easily 

solved by using recursive methods
• For example:

– Traversing through a directory or file system
– Traversing through a tree of search results
– Some sorting algorithms recursively sort data

• For today, we will focus on the basic structure of 
using recursive methods
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Simple Recursion Example
def compute(intInput):

print(intInput)
if (intInput > 2):

compute(intInput-1)

def main():
compute(50)

main()

This program 
simply computes 
from 50 down to 2.  

This is where the recursion occurs.

You can see that the compute() 
function calls itself.
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Visualizing Recursion
• To understand how recursion works, it helps to 

visualize what’s going on.
• To help visualize, we will use a common concept 

called the Stack.
• A stack basically operates like a container of trays in a 

cafeteria.  It has only two operations:
– Push:  you can push something onto the stack.
– Pop:  you can pop something off the top of the stack.

• Let’s see an example stack in action.
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Stacks
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Stacks
• The diagram below shows a stack over time.  
• We perform two pushes and two pops.

Time: 0
Empty Stack

Time 1:
Push “2”

2

Time 2:
Push “8”

2

8

Time 3:
Pop:  Gets 8

2

Time 4:
Pop:  Gets 2
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Stacks
• In computer science, a stack is a last in, first out(LIFO) 

abstract data type and data structure. 
• A stack can have any abstract data type as an element, but is 

characterized by only two fundamental operations, the push
and the pop. 

• The push operation adds to the top of the list, hiding any 
items already on the stack, or initializing the stack if it is 
empty. 
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Stacks
• The nature of the pop and push operations also 

means that stack elements have a natural order. 
• Elements are removed from the stack in the reverse 

order to the order of their addition: therefore, the 
lower elements are typically those that have been in 
the list the longest.
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Stacks and Functions
• When you run a program, the computer 

creates a stack for you.
• Each time you invoke a function, the function 

is placed on top of the stack.
• When the function returns or exits, the 

function is popped off the stack.
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Stacks and Functions

Time: 0
Empty Stack

Time 1:
Push:  main()

main()

Time 2:
Push:  square()

main()

square()

Time 3:
Pop:  square()
returns a value.
method exits.

main()

Time 4:
Pop:  main()
returns a value.
method exits.

This is called an activation record or stack 
frame.  

Usually, this actually grows downward.
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Stacks and Recursion
• Each time a function is called, you push the 

function on the stack.
• Each time the function returns or exits, you pop

the function off the stack.
• If a function calls itself recursively, you just push 

another copy of the function onto the stack.
• We therefore have a simple way to visualize how 

recursion really works.
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Back to the Simple Recursion Program

def compute(intInput):
print(intInput)
if (intInput > 2):

compute(intInput-1)

def main():
compute(50)

main() Here’s the code again.  
Now, that we 
understand stacks, we 
can visualize the 
recursion.
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Stack and Recursion in Action

Inside compute(9):
print (intInput);       9
if (intInput < 2) 

compute(intInput-1);

Inside compute(8):
print (intInput);     8
if (intInput < 2) 

compute(intInput-1);

Inside compute(7):
print (intInput);  7
if (intInput < 2) 

compute(intInput-1);

Time: 0
Empty 
Stack

Time 1:
Push:  main()

main()

Time 2:
Push:  
compute(9)

main()

compute(9)

Time 3:
Push:  
compute(8)

main()

compute(9)

compute(8)

Time 4:
Push:  
compute(7)

main()

compute(9)

compute(8)

compute(7)

After returning
from compute(2)
pop everything

…
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Defining Recursion
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Terminology
def f(n):
if n == 1:
return 1
else:
return f(n - 1)

"Useful" recursive functions have:
• at least one recursive case
• at least one base case 

so that the computation terminates

base
case

recursive
case
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Recursion
def f(n):
if n == 1:
return 1
else:
return f(n + 1)

Find f(5)

We have a base case and a recursive case.  What's wrong?
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Recursion

The recursive case
should call the function
on a simpler input,
bringing us closer and closer
to the base case.
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Recursion
def f(n):
if n == 0:
return 0
else:
return 1 + f(n - 1)

Find f(0)
Find f(1)
Find f(2)
Find f(100)
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Recursion
def f(n):

if n == 0:
return 0
else:
return n + f(n - 1)

f(3)
3 + f(2)
3 + 2 + f(1)
3 + 2 + 1 + f(0)
3 + 2 + 1 + 0
6



www.umbc.edu

Factorial

• 4! = 4 × 3 × 2 × 1 = 24
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Factorial
• Does anyone know the value of 9?

• 362,880

• Does anyone know the value of 10?

• How did you know?
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Factorial
• 9! = 9×8×7×6×5×4×3×2×1

• 10! = 10 × 9×8×7×6×5×4×3×2×1

• 10! = 10 × 9!

• n! = n × (n - 1)!

• That's a recursive definition!
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Factorial
def fact(n):

return n * fact(n - 1)

fact(3)
3 × fact(2)
3 × 2 × fact(1)
3 × 2 × 1 × fact(0)
3 × 2 × 1 × 0 × fact(-1)
...
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Factorial
• What did we do wrong?

• What is the base case for factorial?
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Any Other Questions?
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Announcements
• Lab has been cancelled this week!

– Work on your project instead

• Project 1 is out
– Due by Tuesday, November 17th at 8:59:59 PM
– Do NOT procrastinate!

• Next Class: Recursion
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