
www.umbc.edu

CMSC201
Computer Science I for Majors

Lecture 19 – Recursion

Prof. Jeremy Dixon

Based on slides from the book author, and previous iterations of the course

www.umbc.edu

Last Class We Covered
• Project 1 Details
• Classes
• Inheritance

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives
• To introduce recursion
• To begin to learn how to “think” recursively
• To better understand the concept of stacks

www.umbc.edu

Introduction to Recursion

www.umbc.edu

M.C. Escher:
"Drawing Hands" (1948)

www.umbc.edu

What is Recursion?
• In computer science, recursion is a way of

thinking about and solving problems
• It’s actually one of the central ideas of CS

• Solving a problem using recursion means the
solution depends on solutions to smaller
instances of the same problem

www.umbc.edu

Recursive Procedures
• When creating a recursive procedure, there

are a few things we want to keep in mind:
– We need to break the problem into

smaller pieces of itself
– We need to define a “base case” to stop at
– The smaller problems we break down into

need to eventually reach the base case

www.umbc.edu

Normal vs Recursive Functions
• So far, we’ve had functions call other functions

– For example, main() calls the square() function

• A recursive function, however, calls itself

main()

square()

compute()

www.umbc.edu

Why Would We Use Recursion?
• In computer science, some problems are more easily

solved by using recursive methods
• For example:

– Traversing through a directory or file system
– Traversing through a tree of search results
– Some sorting algorithms recursively sort data

• For today, we will focus on the basic structure of
using recursive methods

www.umbc.edu

Simple Recursion Example
def compute(intInput):

print(intInput)
if (intInput > 2):

compute(intInput-1)

def main():
compute(50)

main()

This program
simply computes
from 50 down to 2.

This is where the recursion occurs.

You can see that the compute()
function calls itself.

www.umbc.edu

Visualizing Recursion
• To understand how recursion works, it helps to

visualize what’s going on.
• To help visualize, we will use a common concept

called the Stack.
• A stack basically operates like a container of trays in a

cafeteria. It has only two operations:
– Push: you can push something onto the stack.
– Pop: you can pop something off the top of the stack.

• Let’s see an example stack in action.

www.umbc.edu

Stacks

www.umbc.edu

Stacks
• The diagram below shows a stack over time.
• We perform two pushes and two pops.

Time: 0
Empty Stack

Time 1:
Push “2”

2

Time 2:
Push “8”

2

8

Time 3:
Pop: Gets 8

2

Time 4:
Pop: Gets 2

www.umbc.edu

Stacks
• In computer science, a stack is a last in, first out(LIFO)

abstract data type and data structure.
• A stack can have any abstract data type as an element, but is

characterized by only two fundamental operations, the push
and the pop.

• The push operation adds to the top of the list, hiding any
items already on the stack, or initializing the stack if it is
empty.

www.umbc.edu

Stacks
• The nature of the pop and push operations also

means that stack elements have a natural order.
• Elements are removed from the stack in the reverse

order to the order of their addition: therefore, the
lower elements are typically those that have been in
the list the longest.

www.umbc.edu

Stacks and Functions
• When you run a program, the computer

creates a stack for you.
• Each time you invoke a function, the function

is placed on top of the stack.
• When the function returns or exits, the

function is popped off the stack.

www.umbc.edu

Stacks and Functions

Time: 0
Empty Stack

Time 1:
Push: main()

main()

Time 2:
Push: square()

main()

square()

Time 3:
Pop: square()
returns a value.
method exits.

main()

Time 4:
Pop: main()
returns a value.
method exits.

This is called an activation record or stack
frame.

Usually, this actually grows downward.

www.umbc.edu

Stacks and Recursion
• Each time a function is called, you push the

function on the stack.
• Each time the function returns or exits, you pop

the function off the stack.
• If a function calls itself recursively, you just push

another copy of the function onto the stack.
• We therefore have a simple way to visualize how

recursion really works.

www.umbc.edu

Back to the Simple Recursion Program

def compute(intInput):
print(intInput)
if (intInput > 2):

compute(intInput-1)

def main():
compute(50)

main() Here’s the code again.
Now, that we
understand stacks, we
can visualize the
recursion.

www.umbc.edu

Stack and Recursion in Action

Inside compute(9):
print (intInput);  9
if (intInput < 2)

compute(intInput-1);

Inside compute(8):
print (intInput);  8
if (intInput < 2)

compute(intInput-1);

Inside compute(7):
print (intInput);  7
if (intInput < 2)

compute(intInput-1);

Time: 0
Empty
Stack

Time 1:
Push: main()

main()

Time 2:
Push:
compute(9)

main()

compute(9)

Time 3:
Push:
compute(8)

main()

compute(9)

compute(8)

Time 4:
Push:
compute(7)

main()

compute(9)

compute(8)

compute(7)

After returning
from compute(2)
pop everything

…

www.umbc.edu

Defining Recursion

www.umbc.edu

Terminology
def f(n):
if n == 1:
return 1
else:
return f(n - 1)

"Useful" recursive functions have:
• at least one recursive case
• at least one base case

so that the computation terminates

base
case

recursive
case

www.umbc.edu

Recursion
def f(n):
if n == 1:
return 1
else:
return f(n + 1)

Find f(5)

We have a base case and a recursive case. What's wrong?

www.umbc.edu

Recursion

The recursive case
should call the function
on a simpler input,
bringing us closer and closer
to the base case.

www.umbc.edu

Recursion
def f(n):
if n == 0:
return 0
else:
return 1 + f(n - 1)

Find f(0)
Find f(1)
Find f(2)
Find f(100)

www.umbc.edu

Recursion
def f(n):

if n == 0:
return 0
else:
return n + f(n - 1)

f(3)
3 + f(2)
3 + 2 + f(1)
3 + 2 + 1 + f(0)
3 + 2 + 1 + 0
6

www.umbc.edu

Factorial

• 4! = 4 × 3 × 2 × 1 = 24

www.umbc.edu

Factorial
• Does anyone know the value of 9?

• 362,880

• Does anyone know the value of 10?

• How did you know?

www.umbc.edu

Factorial
• 9! = 9×8×7×6×5×4×3×2×1

• 10! = 10 × 9×8×7×6×5×4×3×2×1

• 10! = 10 × 9!

• n! = n × (n - 1)!

• That's a recursive definition!

www.umbc.edu

Factorial
def fact(n):

return n * fact(n - 1)

fact(3)
3 × fact(2)
3 × 2 × fact(1)
3 × 2 × 1 × fact(0)
3 × 2 × 1 × 0 × fact(-1)
...

www.umbc.edu

Factorial
• What did we do wrong?

• What is the base case for factorial?

www.umbc.edu

Any Other Questions?

www.umbc.edu

Announcements
• Lab has been cancelled this week!

– Work on your project instead

• Project 1 is out
– Due by Tuesday, November 17th at 8:59:59 PM
– Do NOT procrastinate!

• Next Class: Recursion

	CMSC201� Computer Science I for Majors��Lecture 19 – Recursion
	Last Class We Covered
	Any Questions from Last Time?
	Today’s Objectives
	Introduction to Recursion
	�M.C. Escher:�"Drawing Hands" (1948)
	What is Recursion?
	Recursive Procedures
	Normal vs Recursive Functions
	Why Would We Use Recursion?
	Simple Recursion Example
	Visualizing Recursion
	Stacks
	Stacks
	Stacks
	Stacks
	Stacks and Functions
	Stacks and Functions
	Stacks and Recursion
	Back to the Simple Recursion Program
	Stack and Recursion in Action
	Defining Recursion
	Terminology
	Recursion
	Recursion
	Recursion
	Recursion
	Factorial
	Factorial
	Factorial
	Factorial
	Factorial
	Any Other Questions?
	Announcements

